
GreenStream: Enabling Sustainable LLM Inference
in Stream Processing

Md. Monzurul Amin Ifath and Israat Haque

1. Problem Statement

Large Language Models (LLMs) are increasingly
integrated into stream processing applications (SPAs)
(e.g., predictive fraud detection, personalized
recommendations, and GenAI travel assistants).
LLM inference consumes significant energy, posing a
sustainability challenge.
Traditional optimization methods are hindered by the
complexity of distributed nature of SPAs.

We propose GreenStream, a framework to optimize the
energy efficiency of LLM inference without
compromising the performance of SPAs.

Conceptual Overview

.

Energy meter is based on PyRAPL, pynvml and only
compatible with Intel processors and NVIDIA GPUs.

Evaluate Meta Llama 3.1 8B for preliminary results.

Perform experiments on Intel Xeon Silver 4310 CPU and
NVIDIA A100 GPU.

2. Approach

Automatically identify optimal power caps and model
parameters for minimal energy consumption.
Systematically assess the impact of different LLM
variants on performance and energy usage (e.g., Llama
8B vs 70B).
Evaluate energy efficiency of LLM inference on energy
optimized inference servers (e.g., NVIDIA TensorRT).

4. Example Use Case

5. Preliminary Results

During inference, main energy consumer is the GPU.
3x energy consumption reduction with increasing batch
size of 1 to 100 (in cost of higher GPU memory usage).

Beyond a certain batch size, the decrease in energy
usage plateaus as the GPU cores become fully utilized.

Workflow
 Take an existing SPA script as input.
 Apply patches to the SPA to enable energy meter and
 adjust batch size, I/O length, and parallelism.
 Impose GPU power capping and adaptive GPU energy
 consumption to optimize energy usage.
 Run the patched SPA through optimizer to confirm
 optimal balance between energy usage and performance.

3. Setup Details

Custom energy meter for sustainable ML
from GreenStream import EnergyMeter

Initialize the GreenStream energy meter
energy_meter = EnergyMeter()

Load the pre-trained model,tokenizer
model_name = "meta-llama/Llama-3-8B-text-completion"
....

Define prompt input and tokenize the prompt
prompt = [...]
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

Set generation parameters
generation_params = {
 "max_seq_length": 512,
 "top_p": 0.9,
 "temperature": 0.6,
 "max_gen_len": 64,
}

Generate output with energy measurement
with torch.no_grad():
 energy_meter.begin() # Start measuring energy usage
 output_ids = model.generate(input_ids, **generation_params)
 energy_meter.end() # End measuring energy usage

Decode generated tokens and print in text
....

Total energy consumption is tracked by energy_meter
Average total energy consumption for text generation: ~2900J

